Thursday, December 26, 2013

Battery Equality Monitor

Almost all 24V power systems in trucks, 4WDs, RVs, boats, etc, employ two series-connected 12V lead-acid batteries. The charging system can only maintain the sum of the individual battery voltages. If one battery is failing, this circuit will light a LED. Hence impending battery problems can be forecast. The circuit works by detecting a voltage difference between the two series connected 12V batteries. Idle current is low enough to allow the unit to be permanently left across the batteries.

Battery Equality Monitor Circuit Diagram

battery_equality_monitor_schematic_circuit_diagramw

Parts:

R1 = 2.K
R2 = 4.7K
R3 = 39K
R4 = 39K
R5 = 1.5K
R6 = 1.5K
Q1 = BC547
Q2 = BC547
Q3 = BC557
D1 = 3mm Red LED
D2 = 3mm GreenLED
B1 = DC 12 Volt
B2 = DC 12 Volt

Read More..

Tuesday, December 24, 2013

cell phone jammer will have the normal dissipation as the working time accumulates

 In addition, we can uninstall all the software, and then see if there is no similar "system

error". If there is no similar "system error" and then the lattice machine. Various GSM, CDMA cell phones including PAS, 3G can be shielded through cell phone jammer .
Is to set the error causes the device is not working: do not have lattice machine, as long as you restore the factory settings, Note that this command only to restore the settings, different from

the lattice machine, after the resumption of business card holder, pictures, documents, etc. all still there, just set to restore some friends set incorrectly I do not know how to change it back,

you can use this command. After the above five ways to exclude, if the cell phone is still a problem, often re-start, the machine can not start or turn on the power but you can not enter the

standby or standby process only bright for a few seconds, the cell phone on their own restart repeatedly after turned off state, the Department of the serious problems to the general grid machine.

cell phone jammer will have the normal dissipation as the working time accumulates.
Note: in the grid before formatting the data before backup: No matter what way lattice machine, format, all cell phones C drive is restored to the factory when the state, of course, include your

text messages and cell phone book, so the formatting before they want to keep the program or other documents should be retained. Available reader to operate. To determine in advance you want to

back up data, such as SMS, Contacts, Calendar, and the software installed. Lattice machine should be backed up? Firstly I should say is not backed up as possible, because often you backup is the

wrong place. Backup some of the card holder must be on the line, the personality machine will only backup the card holder and procedures for the classification of documents.
Mostly software presentations and to use the E text. Mostly software presentations and use their softwares home page link. Mostly software presentations and to use the E text. General decryption

introduction can be used to open the handwritten, and sometimes there will bear the registration code of the software. Software to back up data, which will bear the registration information of the

software. Can extract the first on the PC Take a look, if there are * sis suffix software to unlock and install the SIS file sent to your cell phone, if the decompression is open, which have "META

-INF folder also There are a lot of other files, the Java software, general JAR format of java is a special format, suffix is *. jar, RAR compression software that can be mistaken for a rar format

on a PC, you do not unpack. cell phone jammer of high quality will gain more and more customers.
Read More..

Sunday, December 22, 2013

Dual Power Amplifier

As readers will know, there are already several power amplifier projects, two using IC power amps (aka power opamps). Both have been popular, and this project is not designed to replace either of them. However, it is significantly smaller than the others, so it makes building a multiple amp unit somewhat easier because the space demand is much lower. Its quite simple to include 4 amps (two boards) into a small space, but be aware that good heatsinking is essential if you expect to run these amps at significant power levels.

Photo of Completed P127 Board

Photo of Completed P127 Board

The TDA7293 IC uses a MOSFET power stage, where the others featured use bipolar transistors. The main benefit of the MOSFET stage is that it doesnt need such radical protection circuitry as a bipolar stage, so unpleasant protection circuit artefacts are eliminated. There are no apparent downsides to the TDA7293, although it was found that one batch required a much higher voltage on the Standby and Mute pins than specified, or the amps would not work. This is not a limitation, since both are tied to the positive supply rail and are therefore disabled. This particular project has been planned for a long time, but for some reason I never got around to completing the board or the project description. This is now rectified, and its ready to "rock and roll". The board is very small - only 77 x 31mm, so getting it into tight spaces is easy ... provided adequate heatsinking is available of course.

Description

The TDA7293 has a bewildering number of options, even allowing you to add a second power stage (in another IC) in parallel with the main one. This improves power into low impedance loads, but is a rather expensive way to get a relatively small power increase. It also features muting and standby functions, although Ive elected not to use these. 
 
The schematic is shown in Figure 1, and is based on the PCB version. All unnecessary functions have been disabled, so it functions as a perfectly normal power amplifier. While the board is designed to take two TDA7293 ICs, it can naturally be operated with only one, and the PCB is small enough so that this is not an inconvenience. A LED is included to indicate that power is available, and because of the low current this will typically be a high brightness type.


Schematic of Power Amplifier (One Channel Shown)
  
Figure 1 - Schematic of Power Amplifier (One Channel Shown)

The IC has been shown in the same format thats shown in the data sheet, but has been cleaned up for publication here. Since there are two amps on the board, there are two of most of the things shown, other than the power supply bypass caps and LED "Power Good" indicator. These ICs are extremely reliable (as are most power amp ICs), and to reduce the PCB size as much as possible, fuse clips and fuses have not been included. Instead, there are fusible tracks on the board that will fail if there is a catastrophic fault. While this is not an extremely reliable fuse, the purpose is to prevent power transformer failure, not to protect the amplifiers or PCB.  I normally use a gain of 23 (27dB) for all amplifiers, and the TDA7293 is specified for a minimum gain of 26dB, below which it may oscillate. Although this is only a small margin, tests so far indicate that the amp is completely stable. If you wish, you may increase the gain to 28 (29dB) to give a bit more safety margin. To do this, just change the input and feedback resistors (R3A/B and R4A/B) from 22k to 27k.

The circuit is conventional, and is very simple because all additional internal functions are unused. The LED is optional, and if you dont think youll need it, it may be omitted, along with series resistor R3. All connections can be made with plugs and sockets, or hard wired. In most cases, I expect that hard wiring will be the most common, as the connectors are a pain to wire, and add unnecessary cost as well as reduce reliability.  The TDA7293 specifications might lead you to believe that it can use supply voltages of up to ±50V. With zero input signal (and therefore no output) it might, but I dont recommend anything greater than ±35V if 4 ohm loads are expected, although ±42V will be fine if you can provide good heatsinking. In general, the lower supply voltage is more than acceptable for 99% of all applications, and higher voltages should not be used unless there is no choice. Naturally, if you can afford to lose a few ICs to experiments, then go for the 42V supplies (obtained from a 30+30V transformer).

Construction

Because of the pin spacings, these ICs are extremely awkward to use without a PCB. Consequently, I recommend that you use the ESP board because it makes building the amplifier very simple. The PCBs are double sided with plated-through holes, so are very unforgiving of mistakes unless you have a good solder sucker. The best way to remove parts from a double sided board is to cut the pins off the component, then remove each pin fragment individually. This is obviously not something youd wish to do if a power amp IC were installed incorrectly, since it will be unusable afterwards.

Figure 2 - TDA7293V Pinouts

Figure 2 - TDA7293V Pinouts

The diagram above shows the pinouts for the TDA7293V (the "V" means vertical mounting). Soldering the ICs must be left until last. Mount the ICs on your heatsink temporarily, and slide the PCB over the pins. Make sure that all pins go through their holes, and that there is no strain on the ICs that may try to left the edge off the heatsink. When ICs and PCB are straight and aligned, carefully solder at least 4 pins on each IC to hold them in place. The remaining pins can then be soldered. Remember, if you mess up the alignment at this point in construction, it can be extremely difficult to fix, so take your time to ensure there are no mistakes.  This amplifier must not be connected to a preamp that does not have an output coupling capacitor. Even though there is a cap in the feedback circuit, it can still pass DC because there is no input cap on the PCB. I normally include an input cap, but the goal of this board was to allow it to fit into the smallest space possible, and the available board space is not enough to include another capacitor. A volume control (typically 10k log/ audio taper) may be connected in the input circuit if desired.

Note that the metal tab of the TDA7293 is connected to the -Ve supply, so must be insulated from the heatsink. The more care you take with the mounting arrangement, the better. While you can use a screw through an insulating bush and a piece of mica to insulate the tab, a better alternative is to use a clamping bar of some kind. How you go about this depends a lot on your home workshop tools and abilities, but one arrangement Ive found highly satisfactory is a suitable length of 6.25mm square solid steel bar. This is very strong, and allows good pressure on the mica (or Kapton) for maximum heat transfer. Naturally, heatsink compound is absolutely essential.  Do not be tempted to use silicone insulation washers unless you are using the amp at very low supply voltages (no more than ±25V). Its thermal transfer characteristics are not good enough to allow the amp to produce more than about 10 - 20W of music, and even that can be taxing for silicone washers. The amp will shut down if it overheats, but that curtails ones listening enjoyment until it cools down again.

Power Supply

A suitable power supply is shown below, and is completely unremarkable in all respects. The transformer may be a conventional (E-I) laminated type or a toroid. The latter has the advantage of lower leakage flux, so will tend to inject less noise into the chassis and wiring. Conventional transformers are usually perfectly alright though, provided you take care with the mounting location. The bridge rectifier should be a 35A 400V type, as they are cheap, readily available and extremely rugged. Electrolytic capacitors should be rated at 50V. The cap connected across the transformer secondary (C4) should be rated at 275V AC (X Class), although a 630V DC cap will also work. This capacitor reduces "conducted emissions", namely the switching transients created by the diodes that are coupled through the transformer onto the mains supply. The power supply will work without this cap, and will most likely pass CE and C-Tick tests as well, but for the small added cost you have a bit of extra peace of mind as regards mains noise.

Suggested Power Supply
Figure 3 - Suggested Power Supply

The supply shown includes a "loop breaker", which is intended to prevent earth/ ground loops to prevent hum when systems are interconnected. Please be aware that it may not be legal to install this circuit in some countries. The diodes must be high current types - preferably rated at no less than 3A (1N5401 or similar). The loop breaker works by allowing you to have the chassis earthed as required in most countries, but lets the internal electronics "float", isolated from the mains earth by the 10 ohm resistor. RF noise is bypassed by the 100nF cap, and if a primary to secondary fault develops in the transformer, the fault current will be bypassed to earth via the diodes. If the fault persists and the internal fuse (or main power circuit breaker) hasnt opened, one or both diodes will fail. Semiconductor devices fail short-circuit, so fault current is connected directly to safety earth.

Be very careful when first applying mains power to the supply. Check all wiring thoroughly, verify that all mains connections are protected from accidental contact. If available, use a Variac, otherwise use a standard 100W incandescent lamp in series with the mains. This will limit the current to a safe value if there is a major fault. When the loop breaker is used, all input and output connectors must be insulated from the chassis, or the loop breaker is bypassed and will do nothing useful. The body of a level pot (if used) can be connected to chassis, because the pot internals are insulated from the body, mounting thread and shaft.

Note that the DC ground for the amplifiers must come from the physical centre tap between the two filter caps. This should be a very solid connection (heavy gauge wire or a copper plate), with the transformer centre tap connected to one side, and the amplifier earth connections from the other. DC must be taken from the capacitors - never from the bridge rectifier. The order of the fuse and power switch is arbitrary - they can be in any order, and in many cases the order is determined by the physical wiring of the IEC connector if a fused type is used. With a fused IEC connector, the fuse is before the switch and it cannot be removed while the mains lead is inserted.
I have shown a 2A slow-blow fuse, but this depends on the size and type of transformer and your mains supply voltage. Some manufacturers give a recommended fuse rating, others dont. The fuse shown is suitable for a 150VA transformer at 230V AC, and is deliberately oversized to ensure that it will not be subject to nuisance blowing due to transformer inrush current. A 2A fuse will fail almost instantly if there is a major fault. Make sure that the mains earth (ground) is securely connected to guarantee a low resistance connection that cannot loosen or come free under any circumstances. The accepted method varies from one country to the next, and the earth connection must be made to the standards that apply in your country.

WARNING: This power supply circuit requires experience with mains wiring. Do not attempt construction unless experienced, capable and suitably qualified if this is a requirement where you live. Death or serious injury may result from incorrect wiring.

Testing

Never attempt to operate the amplifier without the TDA7293 ICs attached to a heatsink!
Connect to a suitable power supply - remember that the supply earth (ground) must be connected! When powering up for the first time, use 100 ohm 5W "safety" resistors in series with each supply to limit the current if you have made a mistake in the wiring. If available, use a variable bench supply - you dont need much current to test operation, and around 500mA is more than enough. If using a current limited bench supply, the safety resistors can be omitted. Do not connect a speaker to the amplifier at this stage!

If using a normal power supply for the amp tests, apply power (±35V via the safety resistors) and verify that the current is no more than 60mA or so - about 6V across each 100 ohm resistor. No load current can vary, so dont panic if you measure a little more or less. Verify that the DC voltage at both outputs is less than 100mV. Using another 100 ohm resistor in series with a small speaker, or an oscilloscope, apply a sinewave signal at about 400Hz to the input and watch (or listen) for signal. The signal level needs to be adjusted to ensure the amp isnt clipping, and the waveform should be clean, with no evidence of parasitic oscillation or audible distortion. If everything tests out as described, wire the amplifier directly to the power supply and finish off any internal wiring in the amp. Once complete, its ready to use.

Source : www.ecircuitslab.com/.../dual-power-amplifier-using-tda7293.html  
Read More..

Friday, December 20, 2013

Simple Voltage Booster

Here is a simple circuit for boosting 12 V DC to 24 V DC .The circuit is designed straight forward and uses few components.With few modifications the circuit can be used to boost any voltages.

The transistor Q1 and Q2 (D1616)  essentially drives the primary of the transformer.The diodes rectifies the output of transformer to obtain a 24V DC at the output load(here a fan).The capacitors filter away noise and harmonics away from the output.

Simple Voltage Booster Circuit Diagram :


voltage-booster-circuit-diagram
Notes.
  • The component values are not very specific here.We can use any NPN power transistors like D1616,2N 3055,C2236,SL 100 etc for Q1 and Q2.
  • The transformer can be any center tapped 5A transformer with a  7:1 winding ratio.
  • The diodes can be 1N 914 ones.
  • In fact you can easily assemble the circuit from the components in your electronics junk box.
  • By experimenting on the tranformer winding you can get different boost ratios.
  • For high current (around 5A)  games use 2N 3055 transistor or more powerful Darlington pairs for Q1 and Q2.

Source : circuitstoday.com/voltage-booster-circuit
Read More..

Wednesday, December 18, 2013

Build a high volt supply Circuit Diagram

A light dimmer, a 1 µf capacitor and a 12 V car ignition coil form the simple line powered HV generator. The current in the dimmer is shown in Fig. B. At times tp t2, set by the dimmer switch, the inner triac of the dimmer switches on, and a very high and very fast current pulse charges the capacitor through the primary of the induction coil. 

Then at a rate of 120 times per second for a 60 Hz line, a very high voltage pulse appears at the secondary of the coil. To obtain an HV dc output, use a voltage doubler. Dl and D2 are selenium rectifiers (TV 18 Siemens or ITT) used for the supply of television sets. High value output shock protection resistors, R, are recommended when suitable. 

 Build a high-volt supply Circuit Diagram

Build a high-volt supply Circuit Diagram

Read More..

Monday, December 16, 2013

Two Line Intercom Cum Telephone Line Changeover

The circuit presented here can be used for connecting two telephones in parallel and also as a 2-line intercom. Usually a single telephone is connected to a telephone line. If another telephone is required at some distance, a parallel line is taken for connecting the other telephone. In this simple parallel line operation, the main problem is loss of privacy besides interference from the other phone. This problem is obviated in the circuit presented here. Under normal condition, two telephones (telephone 1 and 2) can be used as intercom while telephone 3 is connected to the lines from exchange. In changeover mode, exchange line is disconnected from telephone 3 and gets connected to telephone 2.

2-Line Intercom-Cum-Telephone Line Changeover Circuit Diagram

2-Line Intercom-Cum-Telephone Line Changeover-Circuit-Diagram

For operation in intercom mode, one has to just lift the handset of phone 1 and then press switch S1. As a result, buzzer PZ2 sounds. Simultaneously, the side tone is heard in the speaker of handset of phone 1. The person at phone 2 could then lift the handset and start conversation. Similar procedure is to be followed for initiation of the conversation from phone 2 using switch S2. In this mode of operation, a 3-pole, 2-way slide-switch S3 is to be used as shown in the figure. In the changeover mode of operation, switch S3 is used to changeover the telephone line for use by telephone 2. The switch is normally in the intercom mode and telephone 3 is connected to the exchange line.

Before changing over the exchange line to telephone 2, the person at telephone 1 may inform the person at telephone 2 (in the intercom mode) that he is going to changeover the line for use by him (the person at telephone 2). As soon as changeover switch S3 is flipped to the other position, 12V supply is cut off and telephones 1 and 3 do not get any voltage or ring via the ring-tone-sensing unit. Once switch S3 is flipped over for use of exchange line by the person at telephone 2, and the same (switch S3) is not flipped back to normal position after a telephone call is over, the next telephone call via exchange lines will go to telephone 2 only and the ringtone-sensing circuit will still work. This enables the person at phone 3 to know that a call has gone through. If the handset of telephone 3 is lifted, it is found to be dead. To make telephone 3 again active, switch S3 should be changed over to its normal position.

Source: http://www.ecircuitslab.com/2011/11/two-line-intercom-cum-telephone-line.html
Read More..

Thursday, October 10, 2013

Wire Tracer Receiver

The circuit depicted is the receiver device of a transmitter/receiver combination that will prove extremely handy when tracing the path of electrical wiring in a building or to locate a break in a wire. The corresponding transmitter may be found elsewhere in this website. The transmitter produces a distinctive tone which alternates between 2100 Hz and 2200 Hz. The matching receiver for the wire tracer is possibly even simpler than the transmitter, as is shown by the schematic. It consists of no more than a short wire antenna (a piece of wire, 10 cm long is adequate), a high-pass filter (C1-R1), an amplifier stage (IC1), an output stage (T1) and a loudspeaker.

Wire Tracer Receiver Circuit DiagramThe prototype used a high impedance loudspeaker from a telephone handset, and this worked remarkably well. The purpose of P1 is to adjust the amplification. At the highest amplification, the wire energized by the transmitter can be traced from several tens of centimeters away. A direct electrical connection is therefore not required. However, it is important that you hold the ground connection (earth) in your hand.
Read More..

Tuesday, October 8, 2013

Model Railway Turnout Control

This small circuit can be used to control model railway turnouts operated by AC voltages. A logic level in the range of 5–12 V can be used as the control signal. The coils of the turnout are switched using triacs. Changes in the logic level of the input signal are passed on by the buffer stage built around T1 and T2. The buffer stage is included to boost the current available at the gates of the triacs. If the input goes high, this positive change is passed through via C1. That causes a positive current to flow through D2 (D2 is reverse biased) to the gate of T3. That triac switches on, and power is applied to the turnout coil.

Model Railway Turnout Control circuit schematic

This situation persists until C1 is fully charged. No more current flows after that, so the triac does not receive any gate current and switches off. If the input is set low, a negative current flows briefly via C1. It can flow through D2, but not through D1. T4 is switched on now, and the other turnout coil is energised. This circuit takes advantage of the fact that triacs can be triggered by negative as well as positive gate currents. If the turnout coils are energised for too long, you should reduce the value of C1.

If they are not energised long enough, increase the value of C1. The TIC206D can handle several ampères, so it can easily drive just about any type of turnout coil. You can also use a different type of triac if you wish. However, bear in mind that the TIC206 requires only 5 mA of gate current, while most triacs want 50 mA. That will cause the switching times to become quite short, so it may be necessary to reduce the value of R1.
Read More..

Sunday, October 6, 2013

Passive RIAA Preamplifier

There are two types of preamplifiers for magnetic phono cartridges. An example of the most common type is the one described in the March 2002 issue of SILICON CHIP. It has the RIAA equalisation network in the feedback loop. The second type was previously used in valve circuits which typically had no feedback loop and used passive RC networks to provide the phono equalisation. This experimental preamp was put together using inexpensive FETs to compare the performance of these two types of preamp. The first stage, consisting of Q1 and Q2, is a simple FET audio amplifier, where the FETs are connected in parallel to reduce noise. This is followed by a passive RIAA network consisting of 240kO and 15kO resistors and the associated 0.1OF .022OF and .0047OF capacitors.
Circuit diagram:
passive-riaa-preamplifier-circuit-diagramw
Some of the gain loss in the passive network is then made up by FET Q3. It also has a 51kO drain resistor and is buffered by bipolar transistor Q4 which is connected as an emitter-follower stage. All resistors are 1% tolerance metal film type while the capacitors for equalisation are MKT polyester types. Ideally, the Idss of all FETs should be matched for both channels. Resistors R3 and R8 should be adjusted so that the drain voltage in each stage is between 13V and 14V, to give symmetrical signal clipping. The power supply can be three 9V batteries connected in series. Current consumption is only 3mA for the stereo circuit.
Author: Sam Yoshioka - Copyright: Silicon Chip Electronics
Read More..

Friday, October 4, 2013

Mini High Voltage Generator Circuit

Here’s a project that could be useful this summer on the beach, to stop anyone touching your things left on your beach towel while you’ve gone swimming; you might equally well use it at the office or workshop when you go back to work. In a very small space, and powered by simple primary cells or rechargeable batteries, the proposed circuit generates a low-energy, high voltage of the order of around 200 to 400 V, harmless to humans, of course, but still able to give a quite nasty ‘poke’ to anyone who touches it.

Quite apart from this practical aspect, this project will also prove instructional for younger hobbyists, enabling them to discover a circuit that all the ‘oldies’ who’ve worked in radio, and having enjoyed valve technology in particular, are bound to be familiar with. As the circuit diagram shows, the project is extremely simple, as it contains only a single active element, and then it’s only a fairly ordinary transistor. As shown here, it operates as a low-frequency oscillator, making it possible to convert the battery’s DC voltage into an AC voltage that can be stepped up via the transformer.
Using a centre-tapped transformer as here makes it possible to build a ‘Hartley’ oscillator around transistor T1, which as we have indicated above was used a great deal in radio in that distant era when valves reigned supreme and these was no sign of silicon taking over and turning most electronics into ‘solid state’. The ‘Hartley’ is one of a number of L-C oscillator designs that made it to eternal fame and was named after its invertor, Ralph V.L Hartley (1888-1970). For such an oscillator to work and produce a proper sinewave output, the position of the intermediate tap on the winding used had to be carefully chosen to ensure the proper step-down (voltage reduction) ratio.

Here the step-down is obtained inductively. Here, optimum inductive tapping is not possible since we are using a standard, off-the-shelf transformer. However we’re in luck — as its position in the centre of the winding creates too much feedback, it ensures that the oscillator will always start reliably. However, the excess feedback means that it doesn’t generate sinewaves; indeed, far from it. But that’s not important for this sort of application, and the transformer copes very well with it.

The output voltage may be used directly, via the two current-limiting resistors R2 an R3, which must not under any circum-stances be omitted or modified, as they are what make the circuit safe. You will then get around 200 V peak-to-peak, which is already quite unpleasant to touch. But you can also use a voltage doubler, shown at the bottom right of the figure, which will then produce around 300 V, even more unpleasant to touch. Here too of course, the resistors, now know as R4 and R5, must always be present. The circuit only consumes around a few tens of mA, regardless of whether it is ‘warding off’ someone or not! If you have to use it for long periods, we would however recommend powering it from AAA size Ni-MH batteries in groups of ten in a suitable holder, in order not to ruin you buying dry batteries.

Circuit diagram:

mini-high-voltage-generator-circuit

Warning!
If you build the version without the voltage doubler and measure the output voltage with your multimeter, you’ll see a lower value than stated. This is due to the fact that the waveform is a long way from being a sinewave, and multimeters have trouble interpreting its RMS (root-mean-square) value. However, if you have access to an oscilloscope capable of handling a few hundred volts on its input, you’ll be able to see the true values as stated. If you’re still not convinced, all you need do is touch the output terminals...

To use this project to protect the handle of your beach bag or your attachecase, for example, all you need do is fix to this two small metallic areas, quite close together, each connected to one output terminal of the circuit. Arrange them in such a way that unwanted hands are bound to touch both of them together; the result is guaranteed! Just take care to avoid getting caught in your own trap when you take your bag to turn the circuit off!

Copyright : Elektor Electronics 2008

Read More..

Wednesday, October 2, 2013

Simple Voltmeter

This circuit provides a simple means to determine the voltage of a low-impedance voltage source. It works as follows. P1, which is a 1-W potentiometer, forms a voltage divider in combination with R1. The voltage at their junction is buffered by T1, and then passed to reference diode D1 via R3. D1 limits the voltage following the resistor to 2.5 V. An indicator stage consisting of T2, R4 and LED D2 is connected in parallel with D1. As long as the voltage is not limited by D1, the LED will not be fully illuminated. This is the basic operating principle of this measurement circuit.
Simple Voltmeter circuit diagram
Read More..

Monday, September 30, 2013

Magic Lights

The circuit as shown in the figure employs 14 bi-colour (red and green) LEDs having three terminals each. Different dancing colour patterns are produced using this circuit since each LED can produce three different colours. The middle terminal (pin 2) of the LEDs is the common cathode pin which is grounded. When a positive voltage is applied to pin 1, it emits red light. Similarly, when positive voltage is applied to pin 3. it emits green light. And when positive voltage is simultaneously applied to its pins 1 and 3, it emits amber light. The circuit can be used for decorative lights. IC1 (555) is used in astable mode to generate clock signal for IC2 and IC3 (CD4518) which are dual BCD counters.

Magic Lights circuit diagramBoth counters of each of these ICs have been cascaded to obtain 8 outputs from each. The outputs from IC2 and IC3 are connected to IC4 through IC7 which are BCD to 7-segment latch/decodor/driver ICs. Thus we obtain a total of 14 segment outputs from each of the IC pairs consisting of IC4 plus IC5 and IC6 plus IC7. While outputs from former pair are connected to pin No. 1 of all the 14 bi-colour LEDs via current limiting resistors, the ouputs of the latter pair are similarly connected to pin No.3 of all the bi-colour LEDs to get a magical dancing lights effect.
Read More..

Saturday, September 28, 2013

100W Inverter Circuit Diagram Schematic

Here is a 100 Watt inverter circuit using minimum number of components. I think it is quite difficult to make a decent one like this with further less components.Here we use CD 4047 IC from Texas Instruments for generating the 100 Hz pulses and four 2N3055 transistors for driving the load. The IC1 Cd4047 wired as an astable multivibrator produces two 180 degree out of phase 100 Hz pulse trains.

These pulse trains are preamplified by the two TIP122 transistors.The out puts of the TIP 122 transistors are amplified by four 2N3055 transistors (two transistors for each half cycle) to drive the inverter transformer.The 220V AC will be available at the secondary of the transformer. Nothing complex just the elementary inverter principle and the circuit works great for small loads like a few bulbs or fans.If you need just a low cost inverter in the region of 100 W, then this is the best.

Circuit Diagram:

100watt  inverter circuit schematic diagram 100 Watt Inverter Circuit Diagram

Parts:
P1 = 250K
R1 = 4.7K
R2 = 4.7K
R3 = 0.1R-5W
R4 = 0.1R-5W
R5 = 0.1R-5W
R6 = 0.1R-5W
C1 = 0.022uF
C2 = 220uF-25V
D1 = BY127
D2 = 9.1V Zener
Q1 = TIP122
Q2 = TIP122
Q3 = 2N3055
Q4 = 2N3055
Q5 = 2N3055
Q6 = 2N3055
F1 = 10A Fuse
IC1 = CD4047
T1 = 12-0-12V
Transformr Connected in Reverse

Notes:

  • A 12 V car battery can be used as the 12V source.
  • Use the POT R1 to set the output frequency to50Hz.
  • For the transformer get a 12-0-12 V , 10A step down transformer.But here the 12-
  • 0-12 V winding will be the primary and 220V winding will be the secondary.
  • If you could not get a 10A rated transformer , don’t worry a 5A one will be just
  • enough. But the allowed out put power will be reduced to 60W.
  • Use a 10 A fuse in series with the battery as shown in circuit.
  • Mount the IC on a IC holder.
  • Remember,this circuit is nothing when compared to advanced PWM
  • inverters.This is a low cost circuit meant for low scale applications.

Design tips:

  1. The maximum allowed output power of an inverter depends on two factors.The
  2. maximum current rating of the transformer primary and the current rating of the driving
  3. transistors.
  4. For example ,to get a 100 Watt output using 12 V car battery the primary current will be
  5. ~8A ,(100/12) because P=VxI.So the primary of transformer must be rated above 8A.
  6. Also here ,each final driver transistors must be rated above 4A. Here two will be
  7. conducting parallel in each half cycle, so I=8/2 = 4A .
  8. These are only rough calculations and enough for this circuit.

Source : www.extremecircuits.net

Read More..

Thursday, September 26, 2013

4 Bit Analogue to Digital Converter

The operation of the converter is based on the weighted adding and transferring of the analogue input levels and the digital output levels. It consists of comparators and resistors. In theory, the number of bits is unlimited, but each bit needs a comparator and several coupling resistors. The diagram shows a 4-bit version. The value of the resistors must meet the following criteria:
  • R1:R2 = 1:2;
  • R3:R4:R5 = 1:2:4;
  • R6:R7:R8:R9 = 1:2:4:8.
The linearity of the converter depends on the degree of precision of the value of the resistors with respect to the resolution of the converter, and on the accuracy of the threshold voltage of the comparators. This threshold level must be equal, or nearly so, to half the supply voltage. Moreover, the comparators must have as low an output resistance as possible and as high an input resistance with respect to the load resistors as feasible. Any deviation from these requirements affects the linearity of the converter adversely.

4-Bit Analogue to Digital Converter Circuit DiagramIf the value of the resistors is not too low, the use of inverters with an FET (field-effect transistor) input leads to a near-ideal situation. In the present converter, complementary metal-oxide semiconductor (CMOS) inverters are used, which, in spite of their low gain, give a reasonably good performance. If standard comparators are used, take into account the output voltage range and make sure that the potential at their non-inverting inputs is set to half the supply voltage. If high accuracy is a must, comparators Type TLC3074 or similar should be used.

This type has a totem-pole output. The non-inverting inputs should be interlinked and connected to the tap of a a divider consisting of two 10 kΩ resistors across the supply lines. It is essential that the converter is driven by a low-resistance source. If necessary, this can be arranged via a suitable op amp input buffer. The converter draws a current not exceeding 5 mA.
Read More..

Tuesday, September 24, 2013

Mobile Travel Charger Circuit

Here is an ideal Mobile charger using 1.5 volt pen cells to charge mobile phone while traveling. It can replenish cell phone battery three or four times in places where AC power is not available. Most of the Mobile phone batteries are rated at 3.6 V/500 mA. A single pen torch cell can provide 1.5 volts and 1.5 Amps current. So if four pen cells are connected serially, it will form a battery pack with 6 volt and 1.5 Amps current. When power is applied to the circuit through S1, transistor Q1 conducts and Green LED lights.

Most of the Mobile phone batteries are rated at 3.6 V/500 mA. A single pen torch cell can provide 1.5 volts and 1.5 Amps current. So if four pen cells are connected serially, it will form a battery pack with 6 volt and 1.5 Amps current. When power is applied to the circuit through S1, transistor T1 conducts and Green LED lights. When T1 conducts T2 also conducts since its base becomes negative. Charging current flows from the collector of T1. To reduce the charging voltage to 4.7 volts, Zener diode ZD is used. Resistor R4,and R5 allows 20 mA charging current. If more current is required, reduce the value of R4 to 100 Ohms so that with in 20 to 30 minutes battery will become fully charged. Points A and B are used to connect the charger with the mobile phone. Use suitable pins for this and connect with correct polarity.

Circuit diagram :

Mobile Phone Travel Charger CircuitMobile Phone Travel Charger Circuit Diagram

Parts:

R1 = 1K
R2 = 470R
R3 = 4.7K
R4 = 270R
R5 = 27R
C1 = 100uF-25V
D1 = Green LED
D2 = 4.7V/1W Zener
B1 = 1.5Vx4 Cells
S1 = On/Off Switch
Q1 = BC548
Q2 = SK100

The circuit comes from here.

Read More..

Sunday, September 22, 2013

Low Power FM Transmitter

This article should satisfy those who might want to build a low power FM transmitter. It is designed to use an input from another sound source (such as a guitar or microphone), and transmits on the commercial FM band - it is actually quite powerful, so make sure that you dont use it to transmit anything sensitive - it could easily be picked up from several hundred metres away. The FM band is 88 to 108MHz, and although it is getting fairly crowded nearly everywhere, you should still be able to find a blank spot on the dial.

NOTE: A few people have had trouble with this circuit. The biggest problem is not knowing if it is even oscillating, since the frequency is outside the range of most simple oscilloscopes. See Project 74 for a simple RF probe that will (or should) tell you that you have a useful signal at the antenna. If so, then you know it oscillates, and just have to find out at what frequency. This may require the use of an RF frequency counter if you just cannot locate the FM band.

Description

The circuit of the transmitter is shown in Figure 1, and as you can see it is quite simple. The first stage is the oscillator, and is tuned with the variable capacitor. Select an unused frequency, and carefully adjust C3 until the background noise stops (you have to disable the FM receivers mute circuit to hear this).

Low Power FM TransmitterFigure 1 - Low Power FM Transmitter

Because the trimmer cap is very sensitive, make the final frequency adjustment on the receiver. When assembling the circuit, make sure the rotor of C3 is connected to the +9V supply. This ensures that there will be minimal frequency disturbance when the screwdriver touches the adjustment shaft. You can use a small piece of non copper-clad circuit board to make a screwdriver - this will not alter the frequency.

The frequency stability is improved considerably by adding a capacitor from the base of Q1 to ground. This ensures that the transistor operates in true common base at RF. A value of 1nF (ceramic) as shown is suitable, and will also limit the HF response to 15 kHz - this is a benefit for a simple circuit like this, and even commercial FM is usually limited to a 15kHz bandwidth.

Capacitors
All capacitors must be ceramic (with the exception of C1, see below), with C2 and C6 preferably being N750 (Negative temperature coefficient, 750 parts per million per degree Celsius). The others should be NPO types, since temperature correction is not needed (nor is it desirable). If you cannot get N750 caps, dont worry too much, the frequency stability of the circuit is not that good anyway (as with all simple transmitters).

How It Works
Q1 is the oscillator, and is a conventional Colpitts design. L1 and C3 (in parallel with C2) tunes the circuit to the desired frequency, and the output (from the emitter of Q1) is fed to the buffer and amplifier Q2. This isolates the antenna from the oscillator giving much better frequency stability, as well as providing considerable extra gain. L2 and C6 form a tuned collector load, and C7 helps to further isolate the circuit from the antenna, as well as preventing any possibility of short circuits should the antenna contact the grounded metal case that would normally be used for the complete transmitter.

The audio signal applied to the base of Q1 causes the frequency to change, as the transistors collector current is modulated by the audio. This provides the frequency modulation (FM) that can be received on any standard FM band receiver. The audio input must be kept to a maximum of about 100mV, although this will vary somewhat from one unit to the next. Higher levels will cause the deviation (the maximum frequency shift) to exceed the limits in the receiver - usually ±75kHz.

With the value shown for C1, this limits the lower frequency response to about 50Hz (based only on R1, which is somewhat pessimistic) - if you need to go lower than this, then use a 1uF cap instead, which will allow a response down to at least 15Hz. C1 may be polyester or mylar, or a 1uF electrolytic may be used, either bipolar or polarised. If polarised, the positive terminal must connect to the 10k resistor.

Inductors
The inductors are nominally 10 turns (actually 9.5) of 1mm diameter enamelled copper wire. They are close wound on a 3mm diameter former, which is removed after the coils are wound. Carefully scrape away the enamel where the coil ends will go through the board - all the enamel must be removed to ensure good contact. Figure 2 shows a detail drawing of a coil. The coils should be mounted about 2mm above the board.

For those still stuck in the dark ages with imperial measurements (grin), 1mm is about 0.04" (0.0394") or 5/127 inch (chuckle) - you will have to work out what gauge that is, depending on which wire gauge system you use (there are several). You can see the benefits of metric already, cant you? To work out the other measurements, 1" = 25.4mm

NOTE: The inductors are critical, and must be wound exactly as described, or the frequency will be wrong.

Figure 2 - Detail Of L1 And L2

The nominal (and very approximate) inductance for the coils is about 130nH.This is calculated according to the formula ...

L = N² * r² / (228r + 254l)

... where L = inductance in microhenries (uH), N = number of turns, r = average coil radius (2.0mm for the coil as shown), and l = coil length. All dimensions are in millimetres.

Pre-Emphasis

It is normal with FM transmission that "pre-emphasis" is used, and there is a corresponding amount of de-emphasis at the receiver. There are two standards (of course) - most of the world uses a 50us time constant, and the US uses 75us. These time constants represent a frequency of 3183Hz and 2122Hz respectively. This is the 3dB point of a simple filter that boosts the high frequencies on transmission and cuts the same highs again on reception, restoring the frequency response to normal, and reducing noise.

The simple transmitter above does not have this built in, so it can be added to the microphone preamp or line stage buffer circuit. These are both shown in Figure 3, and are of much higher quality than the standard offerings in most other designs.

Low Power FM TransmitterFigure 3 - Mic And Line Preamps

Rather than a simple single transistor amp, using a TL061 opamp gives much better distortion figures, and a more predictable output impedance to the transmitter. If you want to use a dynamic microphone, leave out R1 (5.6k) since this is only needed to power an electret mic insert. The gain control (for either circuit) can be an internal preset, or a normal pot to allow adjustment to the maximum level without distortion with different signal sources. The 100nF bypass capacitors must be ceramic types, because of the frequency. Note that although a TL072 might work, they are not designed to operate at the low supply voltage used. The TL061 is specifically designed for low power operation.

The mic preamp has a maximum gain of 22, giving a microphone sensitivity of around 5mV. The line preamp has a gain of unity, so maximum input sensitivity is 100mV. Select the appropriate capacitor value for pre-emphasis as shown in Figure 3 depending on where you live. The pre-emphasis is not especially accurate, but will be quite good enough for the sorts of uses that a low power FM transmitter will be put to. Needless to say, this does not include "bugging" of rooms, as this is illegal almost everywhere.

I would advise that the preamp be in its own small sub-enclosure to prevent RF from entering the opamp input. This does not need to be anything fancy, and you could even just wrap some insulation around the preamp then just wrap the entire preamp unit in aluminum foil. Remember to make a good earth connection to the foil, or the shielding will serve no purpose.
Read More..

Friday, September 20, 2013

1995 Ford Windstar Wiring Diagram

1995 Ford Windstar Wiring Diagram


The Part of 1995 Ford Windstar Wiring Diagram: starting system, battery, fusible link, instrument cluster,
fuse panel, ignition switch, digital cluster, analog cluster, integral alternator regulator, screw, field, warning indicator, stator, rectifier, switching circuits
Read More..

Thursday, September 12, 2013

Simple Flashing LED

The circuit is designed to use very little current to prolong battery life so that it can be left on permanently. A superbright’ red LED is used because this provides a bright flash with a low current.

If you want to use 4.5V supply by connecting 3 Alkaline cells or any other source, change the resistor along with LED from 3.3k to 1k for a better flash.
Note that AA cells will last longer than a 9V PP3 battery 

To flash two LEDs alternatively we have to increase the clock pulse speed to possibly fastest to have exact proper alternation.link

Parts Required:
  1. 100k potentiometer
  2. 10k and 3.3k
  3. 10mF
  4. LED
  5. 555 Timer
  6. 9v Battery

Circuit Diagram:
There are three different modes to flash an LED using 555 Timer
 


and their bread board arrangements
         
Read More..

Tuesday, September 10, 2013

Dual Basic Motor Speed Controllers Circuit Diagram

Here  are two simple 12V DC motor speed controllers that can be built for  just a few dollars. They exploit the fact that the rotational speed of a  DC motor is directly proportional to the mean value of its supply  voltage. The first circuit shows how variable voltage speed control can  be obtained via a potentiometer (VR1) and compound emitter follower (Q1  & Q2). With this arrangement, the motor’s DC voltage can be varied  from 0V to about 12V. This type of circuit gives good speed control and  self-regulation at medium to high speeds but very poor low-speed control  and slow starts. The second circuit uses a switchmode technique to vary  motor speed.

 Dual Basic Motor Speed Controllers Circuit Diagram fig 1

 Dual Basic Motor Speed Controllers Circuit Diagram fig 1

Here a quad NOR gate (IC1) acts as a 50Hz  astable multivibrator that generates a rectangular output. The  mark-space ratio of the rectangular waveform is fully variable from 20:1  to 1:20 via potentiometer VR1. The output from the multivibrator drives  the base of Q1, which in turn drives Q2 and the motor. The motor’s mean  supply voltage (integrated over a 50Hz period) is thus fully variable  with VR1 but is applied in the form of high-energy "pulses" with peak  values of about 12V.

 Dual Basic Motor Speed Controllers Circuit Diagram fig 2

 Dual Basic Motor Speed Controllers Circuit Diagram fig 2
 

This type of circuit gives excellent  full-range speed control and gives high motor torque, even at very low  speeds. Its degree of speed self-regulation is proportional to the mean  value of the applied voltage. Note that for most applications, the power  transistor (Q2) in both circuits will need to be mounted on an  appropriate heatsink.


Sourced by : Streampowers
Read More..

Tuesday, September 3, 2013

Safety Polarity Connection

This electronic project prevents incorrect connection of polarized sources in circuit and is designed using common electronic components. Safety of polarity from the diagram below was dimensioned for a voltage of 12 volts. When connecting correctly voltage to terminals 1 and 2 through RE1 resting contact, diode D1 and the coil current flows once the switch closes the circuit (relay closing, established by contact or connection with device connected).

Safety Polarity Connection Circuit Diagram
Safety Polarity Connection Circuit Diagram
When you connect the wrong polarity of power supply, diode D1 is blocked, the relay no longer closing and power is interrupted device. R1 resistance reduces current flowing through relay coil connected in the state, so that losses to be minimal (the resistance should be chosen according to characteristics of the relay).


Read More..

Sunday, September 1, 2013

10 Channels Sensor Switch

A touch sensor switch circuit that works with 10 channels can be designed using electronic scheme in the figure below. If one of the 10 sensors is touched, the corresponding output goes in a logical state 1, the other inputs are in logic state 0.

10 Channels Sensor Switch Circuit Diagram

This 10 channel sensor switch is built using 4017 CMOS decimal counter which provides "decoded" signals. A second oscillator realized with CMOS logic gates produces clock signal. The counter is working until it achieved the desired position of the switch.

The switch can be supplied with a DC voltage between 3 and 15 volts DC.

Read More..

Friday, August 30, 2013

Pressed Button Sound Indicator

sing this electronic scheme can be made an electronic circuit that allows a sound indication for a button.The circuit is based on a 7555 integrated timer (CMOS version of the well-known ment 555) is connected as a multivibrator astabil .His output is a rectangular pulse with a frequency of 700 Hz, which is used to control a small buzzer.


Pressed Button Sound Indicator Schematic 


Pressed button sound indicator circuit 
 
The circuit will oscillate be prevented if pin 4 of integrated circuit is connected to 0 V.
 
Read More..

Friday, August 16, 2013

Type of pneumatic valve

Pneumatic Valve Types
Pneumatic valves have many types and functions. pneumatic valves .The role as a regulator / controller in the pneumatic system. Components such control or so-called valves (Valves). Pneumatic Valve types can be grouped according to the construction design as follows:

valve type, valve type species, type of pneumatic valve, control valve components
a. Poppet valves (Poppet Valve Pneumatic)
■ Ball Valve (Ball Valve Pneumatic Seat)
■ Disc Valves (Pneumatic Valve Seat Disc)

b. Slide valve (slide valve Pneumatic)
■ Longitudinal Slide
■ Slide Plate

Meanwhile, according to its function valves are grouped as follows:
a) Valves Steering (Directional Control Valves)
b) One-way Valve (Non Return Valves)
c) Regulatory Pressure Valve (Pressure Control Valves)
d) Flow Control Valves (Flow Control Valves)
e) open-close valve (Shut-off valves)

While the arrangement order in the pneumatic system can be described as follows:
■ The input signal or input element gets energy directly from
power source (air felts) are then transmitted to the processor
signal.
■ The signal processor or processing element signal processing
logic inputs are to be forwarded to the fi nal control element.
■ end of the control signal (final control element) that will drive the direction of movement of the actuator output (working element) and this is the end result of the pneumatic system.

- Pneumatic-Valve Types
Read More..

Wednesday, August 14, 2013

New LG OLED Display


OLED display technology also known as organic semiconductors,which is considered to take over LCD and plasma technology, the next-generation flat panel display technology, which has colorful, dynamic clarity, slim size and lower power consumption. It has been in mobile phones more widely used.

However, before the announcement of LG, Samsung Electronics is also from South Korea  said it will be on display CES 55?? LED TV at next year. Therefore, this behavior is also considered to be forced to move LG deal with Samsung.

PS, if you are looking for the cases for consumer electronics.
Read More..

Monday, August 12, 2013

Simple Programmable Attenuator Circuit

This Simple Programmable Attenuator Circuit performs the function of dividing the input signal by a selected constant (1, 2, 4, 8, etc.). While T, Z, or L sections could be used in the input attenuator, this is not necessary since the amplifier loading is negligible and a constant input impedance is maintained. The circuit is thus much simpler and more accurate than the usual method of constructing a constant impedance ladder, and switching sections in and out with analog switches. Two identical circuits can be used to attenuate a balanced line .

Simple Programmable Attenuator Circuit

Simple Programmable Attenuator Circuit

Read More..

Saturday, August 10, 2013

DC Coupled Current Monitor Circuit



This is design circuit for DC coupled current monitor that is eliminates the previous circuit’s trim but pulls more current from the APD bias supply. A1 floats powered by the APD bias rail. This is the figure of the circuit.



The 15V zener diode and current source Q2 ensure A1 never is exposed to destructive voltages. The 1kW current shunt’s voltage drop sets A1’s positive input potential. A1 balances its inputs by feedback controlling its negative input via Q1. As such, Q1’s source voltage equals A1’s positive input voltage and its drain current sets the voltage across its source resistor. Q1’s drain current produces a voltage drop across the ground referred 1k resistor identical to the drop across the 1kW current shunt and, hence, APD current. This relationship holds across the 20V to 90V APD bias voltage range. The 5.6V zener assures A1’s inputs are always within their common mode operating range and the 10M resistor maintains adequate zener current when APD current is at very low levels.

Two output options are shown. A2, a chopper stabilized amplifier, provides an analog output. Its output is able to swing to (and below) zero because its V– pin is supplied with a negative voltage. This potential is generated by using A2’s internal clock to activate a charge pump which, in turn, biases A2’s V– pin. A second output option substitutes an A-to-D converter, providing a serial format digital output. No V– supply is required, as the LTC2400 A-to-D will convert inputs to (and slightly below) zero volts. [Schematic’s circuit source: Linear Technology Notes].
Read More..

Thursday, August 8, 2013

Switchmaking Proper Connection

Light Switch Wiring Diagram on Com Wp Content Uploads 2008 01 2 Way Switch Wiring Diagram Jpg
Com Wp Content Uploads 2008 01 2 Way Switch Wiring Diagram Jpg.


Light Switch Wiring Diagram on Installing An Additional Light Point   2 Gang Switch
Installing An Additional Light Point 2 Gang Switch.


Light Switch Wiring Diagram on Types Of Light Switches   Hometips
Types Of Light Switches Hometips.


Light Switch Wiring Diagram on Wiring Diagram Light Switch Wiring Diagram Light Switch 34038
Wiring Diagram Light Switch Wiring Diagram Light Switch 34038.


Light Switch Wiring Diagram on Diagram 2  The Wiring Is Very Similar To Diagram 1 Except A Switch Has
Diagram 2 The Wiring Is Very Similar To Diagram 1 Except A Switch Has.


Light Switch Wiring Diagram on Light Switch Wiring Diagram Uk   Reviews And Photos
Light Switch Wiring Diagram Uk Reviews And Photos.


Light Switch Wiring Diagram on Read Switch This Wiring Which Controls Light Switch Is There
Read Switch This Wiring Which Controls Light Switch Is There.


Light Switch Wiring Diagram on Three Way Switch   Making The Proper Connection
Three Way Switch Making The Proper Connection.


Light Switch Wiring Diagram on Two Way Light Switch Wiring
Two Way Light Switch Wiring.


Light Switch Wiring Diagram on Wiring A Double Light Switch Diagram   Electrical Information Blog
Wiring A Double Light Switch Diagram Electrical Information Blog.


Read More..

Tuesday, August 6, 2013

Wiring Harness Cable Connection Diagram Sourcemanual

Wiring Harness on Posts Datsun 510 Wiring Diagram And Cable Harness Schematic 2004
Posts Datsun 510 Wiring Diagram And Cable Harness Schematic 2004.


Wiring Harness on Wiring Harness And Cable Connection Diagram Here  Source  Manual
Wiring Harness And Cable Connection Diagram Here Source Manual.


Wiring Harness on Wiring Harness Connectors Wiring Harness Connectors Manufacturer
Wiring Harness Connectors Wiring Harness Connectors Manufacturer.


Wiring Harness on Hid Xenon Bulb D2s D2r D2c Wiring Harness Socket Adapters   2080
Hid Xenon Bulb D2s D2r D2c Wiring Harness Socket Adapters 2080.


Wiring Harness on Chevy Truck Underhood Wiring Diagrams   Chuck S Chevy Truck Pages Com
Chevy Truck Underhood Wiring Diagrams Chuck S Chevy Truck Pages Com.


Wiring Harness on Engine Wiring Diagram 4  Automotive Wire Harness   Prestolite Wire
Engine Wiring Diagram 4 Automotive Wire Harness Prestolite Wire.


Wiring Harness on Cassette   Cd And 6 Speakers Audio System Wiring   Circuit Schematic
Cassette Cd And 6 Speakers Audio System Wiring Circuit Schematic.


Wiring Harness on Troubleshooting Trailer Wiring
Troubleshooting Trailer Wiring.


Wiring Harness on Typical 7 Way Trailer Wiring Diagram   Circuit Schematic
Typical 7 Way Trailer Wiring Diagram Circuit Schematic.


Wiring Harness on Wiring Harness  Wiring Harness
Wiring Harness Wiring Harness.


Read More..